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1. Introduction

A remarkable collection of observations of neutrino oscillations confirms, if there was any

need to, the existence of physics beyond the standard model. What precisely the new de-

grees of freedom are that may lurk beyond the standard model, and what their interactions

are, is still a mystery. We all have our prejudices about what lies beyond the standard

model, but in the final analysis only observations will inform us of physics beyond the

energies we have so far been limited to. The observations leading to the neutrino mass

matrix do give us some clues, but at the same time they leave us with tremendous freedom

to speculate about the precise microscopic physics responsible for neutrino masses.

The gauge invariant dimension five operator that is thought to give rise to neutrino

masses once the electroweak symmetry is broken could be generated at tree level or at

loop level. Assuming it is generated at tree level, we know that it has three different

realizations [1]. The three cases can be thought of as extensions of the standard model

by a very massive gauge-singlet fermion, a very massive scalar transforming in the adjoint

of SU(2)L carrying hypercharge, and a very massive fermion transforming in the adjoint

of SU(2)L carrying no hypercharge. All these degrees of freedom might be present in
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nature, with masses beyond the reach of our current experiments. In this case each of

them would contribute to the neutrino masses. It seems reasonable, however, to assume

that the contribution of one of them will dominate over the others. The cases where the

dominant contribution is due to the heavy singlet fermion and the heavy scalar triplet have

been studied extensively in the literature.

In this paper, we will explore some of the possible implications that arise in the case

that the dominant contribution comes from triplet fermions [1 – 3].

The decay of these triplets violates lepton number. In models with at least three

generations of triplet fermions it is generically CP violating, and it is slow enough to lead

to a small departure from thermal equilibrium. In other words, the prerequisites for a

successful generation of the baryon asymmetry are met. Detailed calculations show that a

model with three families of triplet fermions is indeed capable of producing the observed

baryon asymmetry for triplet masses above some 1010 GeV .1

The addition of these triplet fermions modifies the running of the standard model gauge

couplings. We will be prejudiced and demand that the gauge couplings of the standard

model unify. Consistent with this bias, we will include grand unification partners to the

triplet fermions. Clearly, the precise field content will depend on a choice of GUT group.

To give an explicit realization of our ideas we will consider embedding the standard model

gauge group into SU(5) but the idea works just as well for the other popular GUT groups.

At low energies, the model we will exhibit in this paper therefore just has the standard

model degrees of freedom, with neutrino masses and mixings encoded in a dimension five

operator. At intermediate scales, the microscopic physics we will invoke as being responsible

for this dimension five operator will require three families of triplet fermions. When put

into the context of grand unified theories there will also be octet fermions at intermediate

scales and additional degrees of freedom at the GUT scale, but these heavy degrees of

freedom will not play a role for most aspects we will discuss.

Since the model generically only contains the standard model degrees of freedom at

low energies, it cannot possibly address the gauge hierarchy problem. In this regard we

take the point of view that our so far trustworthy guide, naturalness, may well let us down

when it comes to estimating the magnitude of the cosmological constant or even the Higgs

mass.2 There may well be some explanation for the smallness of these parameters in our

low energy effective field theories that has escaped us so far. The other option, unsatisfying

as it may seem, is that the explanation for the smallness of the cosmological constant and

(or) the Higgs mass is anthropic.

The organization of this paper is as follows: In the next section, we will exhibit the

model that will be starting point for our calculations in sections 3 and 4.

In section 3, we present the mass matrix for the light neutrinos and mention bounds

on the masses of the triplet fermions imposed by experimental limits on rare decays, ex-

perimental limits on the electric dipole moment of the electron, and electroweak precision

measurements. These bounds turn out to be rather weak.

1During the final stages of this work, we became aware through reference [4] that the earlier paper [5]

has some overlap with our section 4.
2For a detailed and thoughtful discussion see [6]
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By solving the Boltzmann equations numerically, we show in section 4 that, for triplet

masses around 1010 GeV , the model can generate the observed baryon asymmetry. A

rather nice feature of this model is that the triplets’ gauge interactions ensure that the

initial conditions for the Boltzmann equations are given by thermal equilibrium, something

that is not at all clear in the case of leptogenesis via the more commonly studied singlet

fermions.

In section 5 we present an explicit realization in the context of an SU(5) GUT theory.

We derive bounds on the masses of triplets and their unification partners imposed by our

bias that unification should occur. We find that, assuming all three triplet masses are

of the same order of magnitude, unification requires the triplets to have masses around

1010 GeV , which incidentally coincides with what was required for successful generation of

the baryon asymmetry.

In the conclusions, we mention an extension of our ideas that gives rise to a candidate

for dark matter and a different way of obtaining the baryon asymmetry of the universe.

2. The model and the actors I

In addition to the standard model degrees of freedom, the model has three families of Weyl

fermions, Ti, where i = 1, 2, 3 denote the families, that transform as singlets under SU(3)c,

as triplets under SU(2)L, and carry no hypercharge. We will refer to these as “triplets”.3

With the standard model extended by these new degrees of freedom, the most general

renormalizable Lagrangian takes the form

L = LSM − TαA
i i∂αα̇T

α̇A
i − 1

2
Mi

(

TαA
i TA

iα + T
A
iα̇T

α̇A
i

)

− yijǫacτ
Aa

bℓ
αc
i TA

jαH
†b + y∗ijǫ

acτAb
aℓiα̇cT

α̇A
j Hb . (2.1)

Some remarks on our conventions are in order. The fields T , ℓ, and H are the triplet,

lepton doublet, and standard model Higgs doublet, respectively. Lower case indices from

the beginning of the Roman alphabet are SU(2)L indices with superscripts denoting the

fundamental representation and subscripts denoting the anti-fundamental representation.

Lower case letters from the middle of the Roman alphabet label the three different families.

Upper case letters label objects transforming in the adjoint representation of SU(2)L. Lower

case letters from the beginning of the Greek alphabet are the usual SL(2,C) spinor indices.

At this point, the triplet masses, Mi are still arbitrary as are the Yukawa couplings, yij.

We will see how those are related to the masses of the light neutrinos in sections 3.1. We

take the SU(2)L generators, τAa
b, to be normalized according to Tr(τAτB) = 1

2δ
AB .

3. Masses of the standard model leptons

As was first discussed in [2], the presence of triplet states leads to neutrino masses. The

resulting neutrino mass matrix takes the same form as in the case of singlets, which means

that the two models are equally viable.

3We can, of course, equivalently think of them as Majorana fermions.
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In the charged lepton sector the two models differ significantly. The presence of triplet

states potentially leads to flavor changing neutral currents and an electric dipole moment

for the electron, but the smallness of the neutrino masses guarantees that the model is far

from being in conflict with current experimental bounds.

Because of the vector-like nature of the triplets, electroweak precision data does not

lead to any interesting constraints on the model.

3.1 Neutrino masses

Let us first turn our attention to the generation of the light neutrino masses. At tree-level,

the only operators that are needed for our discussion are

L ⊃ −1

2
Mi

(

TαA
i TA

iα + T
A
iα̇T

α̇A
i

)

− yijǫacτ
Aa

bℓ
αc
i T

A
jαH

†b + y∗ijǫ
acτAb

aℓiα̇cT
α̇A
j Hb . (3.1)

Once the Higgs field acquires a vacuum expectation value, 〈Ha〉 = 1√
2
vδ2a,4 this leads to a

mass matrix for the neutral components of leptons and triplets of the form

L ⊃ −1

2

(

ℓ1α
i Tα3

i

)

(

0 − 1
2
√

2
yijv

− 1
2
√

2
yT

ijv Miδij

)(

ℓ1α
j

Tα3
j

)

+ h.c. (3.2)

Up to an overall factor of 1/2, which we might as well absorb into the Yukawa couplings,

the mass matrix,

M =

(

0 − 1
2
√

2
yijv

− 1
2
√

2
yT

ijv Miδij

)

, (3.3)

is the same as in the more commonly studied case of heavy right-handed gauge singlet

fermions. It is therefore apparent that the triplet model is equally viable as the singlet

model, at least as far as the mass matrix for the light neutrinos is concerned. The diago-

nalization and parametrization of the mass matrix of the light neutrinos in terms of mixing

angles proceeds in the same way as in the singlet model and the reader familiar with the

discussion in the singlet case can safely skip the rest of this subsection. We merely include

it to establish the notation we use in the rest of the paper.

The mass matrix is complex symmetric, and we know from the singular value decom-

position of complex symmetric matrices that it is related to a diagonal matrix with real

entries on the diagonal according to

M = U∗
(

Dm 0

0 DM

)

U† , (3.4)

where U is a 6 × 6 unitary matrix, Dm = diag(m1,m2,m3) are the masses of the light

neutrinos, and DM = diag(M̃1, M̃2, M̃3) are the masses of the neutral components of the

triplets. Introducing mD ij ≡ − 1
2
√

2
yijv, and assuming that all the entries in mD are much

smaller than the masses of the triplets, the diagonalization can be done in perturbation

theory. Introducing fields νiα, the flavor eigenstates of the light neutrinos, and T̃iα, the

4To be specific, in these conventions we have v = 246GeV .
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neutral components of the triplets, that are related to ℓ1α
i and Tα3

i to leading order in

mD/M by
(

ℓ1α

Tα3

)

=

(

1 m∗
DM

−1

−M−1mT
D 1

)(

να

T̃α

)

, (3.5)

the mass terms of neutrinos and triplets take the form5

L ⊃ −1

2
να

i mν ijνjα − 1

2
MiT̃

α
i T̃iα + h.c. , (3.6)

with the mass matrix for the light neutrinos, mν , given by the familiar formula

mν = −mDM
−1mT

D . (3.7)

It can be diagonalized as usual by a 3 × 3 unitary matrix U0 relating flavor and mass

eigenstates according to

Dm = −UT
0 mDM

−1mT
DU0 . (3.8)

For completeness, let us note that this implies that the unitary matrix U is given by

U =

(

1 m∗
DM

−1

−M−1mT
D 1

)(

U0 0

0 1

)

. (3.9)

It will be convenient for later sections to express the Yukawa couplings yij in terms of the

masses of light neutrinos and neutral components of the triplets. From equation (3.8) we

see that the matrix

R ≡ i
√

DM
−1
mT

DU0

√

Dm
−1

(3.10)

is complex orthogonal, i.e. satisfies RTR = 1. In terms of this matrix the Yukawa couplings

are related to the masses of neutrinos and triplets according to:

y =
2
√

2i

v
U∗

0

√

DmR
T
√

DM . (3.11)

3.2 Charged lepton masses and experimental constraints on the model

Let us now turn to the masses of the charged leptons. Here we encounter the first qualitative

difference between the singlets and the triplets because the charged components of the

triplets can mix with the charged leptons. The relevant part of the Lagrangian for this

part of our discussion is

L ⊃ −1

2
MiT

αA
i TA

iα − yijǫacτ
Aa

bℓ
αc
i TA

jαH
†b − ye,ijℓ

αa
i Haẽ

c
jα + h.c. , (3.12)

where the superscript c in ẽcjα denotes charge conjugation. In the broken phase this leads

to a mass term in the Lagrangian for the charged leptons of the form

L ⊃ −
(

ℓ2α
i Tα−

i

)

(

ye,ijv√
2

−yijv
2

0 Miδij

)(

ẽcjα
T+

jα

)

+ h.c. (3.13)

5Mi and M̃i are equivalent to this order.
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We can perform a singular value decomposition to obtain the mass eigenvalues and eigen-

states using unitary matrices V and W according to

M =

(

ye,ijv√
2

−yijv
2

0 Miδij

)

= V∗
(

m̃iδij 0

0 M̂iδij

)

W† , (3.14)

where m̃i are me, mµ, and mτ , the masses of the charged leptons and M̂i are the masses

of the charged triplets. The unitary matrices V and W can again easily be obtained

perturbatively. To second order they are

V =

(

1 −m∗
DM

−2mT
D

√
2m∗

DM
−1

−
√

2M−1mT
D 1 −M−1mT

Dm
∗
DM

−1

)(

Vl 0

0 VT

)

, (3.15)

and

W =

(

1
√

2m†
emDM

−2

−
√

2M−2m†
Dme 1

)(

Wl 0

0 WT

)

, (3.16)

where we have introduced me = yev/
√

2, and Vl, Wl are the unitary 3 × 3 matrices that

are usually used to diagonalize the lepton Yukawa couplings.

This mixing will in general lead to electric dipole moments for the electron as well as

to rare decays such as µ− → e−e−e+ at tree level, and µ− → e−γ at one loop. This can be

seen by looking at the coupling of the light leptons and triplets to the gauge bosons. The

photon couples universally to leptons and charged triplet components, so its couplings will

still be diagonal. There will be mixing in the couplings of leptons to the W-boson. Some

of these are already present in the form of the PMNS matrix if neutrino masses are due

to heavy singlets, but there are also couplings to the W-boson mixing light leptons and

triplets, which are not present in the singlet case. These potentially lead to electric dipole

moments of the electron. These types of couplings between leptons and triplets also arise

in couplings to the Z-boson, where in addition we also have potentially dangerous mixings

between the light leptons giving rise to flavor changing neutral currents. Since the couplings

to the W-boson do not give rise to any dangerous effects that are not already present in the

couplings to the Z, it is then sufficient, at least for the purposes of constraining the triplet

masses, to focus on the couplings of charged leptons and charged triplets to the Z-boson.

For this discussion the relevant term in the Lagrangian is

L ⊃ −ℓαa
i iDαα̇ℓ

α̇
a i − ẽc α

i iDαα̇ẽ
c α̇
i − TαA

i iDαα̇T
α̇A
i (3.17)

If we introduce the fields corresponding to mass eigenstates of the charged leptons and

charged triplets according to
(

ℓ2α

Tα−

)

=

(

1 −m∗
DM

−2mT
D

√
2m∗

DM
−1

−
√

2M−1mT
D 1 −M−1mT

Dm
∗
DM

−1

)(

Vl 0

0 VT

)(

eα

T̃α−

)

, (3.18)

and similarly
(

ẽcα
T+

α

)

=

(

1
√

2m†
emDM

−2

−
√

2M−2m†
Dme 1

)(

Wl 0

0 WT

)(

ecα
T̃+

α

)

, (3.19)
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the coupling of the charged leptons and charged triplets to the Z-boson up to order

O(m2
e,D/M

2) takes the following form

L ⊃
(

eci α̇ T̃
+

iα̇

)







g′2√
g2+g′2

2
√

g2+g′2W †
l
m†

em∗
DM−2WT√

2

2
√

g2+g′2W †
T

M−2m†
D

meWl√
2

− g2√
g2+g′2







(

ecj α

T̃+
j α

)

Z α̇α +

(

ei α̇ T̃
−
iα̇

)







g2−g′2+2(g2+g′2)V †
l

m∗
D

M−2mT
D

Vl

2
√

g2+g′2
−
√

g2+g′2V †
l

m∗
D

M−1VT√
2

−
√

g2+g′2V †
T

M−1mT
D

Vl√
2

g2−g′2V †
T

M−1mT
D

m∗
D

M−1VT√
g2+g′2







(

ej α

T̃−
j α

)

Z α̇α

(3.20)

Since the unitary matrices Vl,T and Wl,T are already determined by requiring that the

mass matrix for the charged leptons and triplets be diagonal, we immediately see that the

second contribution generically gives rise to flavor-changing neutral currents in the lepton

sector leading for instance to µ− → e−e−e+ at tree level and µ− → e−γ at one loop.

We also see that there are generically non-vanishing CP-violating phases that give rise to

an electric dipole moment for the electron. Both rare decays such as µ− → e−e−e+, or

µ− → e−γ, and the electron electric dipole moment are of course strongly constrained

experimentally. For any value of triplet masses that has not already been ruled out by the

fact that no triplets were seen at LEP, the smallness of the light neutrino masses implies,

however, that both rare decays and electric dipole moments generated in this model are

beyond the reach of current experiments. This has been studied in more detail in [7, 8].

Another stringent constraint on physics beyond the standard model comes from precision

electroweak measurements. The triplets are charged under the weak force and it is natural

to ask whether the masses of triplets can be bounded by precision electroweak data from

LEP. Due to their vector-like nature this does not, however, yield a stronger constraint than

the non-observation at LEP either. At leading order, the parameters S, T , U as defined

in the original paper [9] vanish identically. One might worry about contributions to T and

U at higher loop order, but these are too small to constrain the triplets masses as well.

Including into the study the parameters X, V , W introduced in [10] does not yield any

interesting bounds on triplet masses, either. Instead, putting everything together, one finds

that for light triplets the Higgs is allowed to be marginally heavier than usual. We conclude

that triplets of any mass are allowed that is not already ruled out by non-observation of

triplets at LEP or the Tevatron. In particular, it is conceivable that triplets have just the

right masses to be seen at the LHC. This requires tiny Yukawa couplings of the triplets

to leptons and Higgs to keep the neutrino masses small. This implies that the decays of

these light triplets then give rise to interesting signatures in the detector such as displaced

vertices. This possibility has been studied very recently in more detail in [4].

Since Yukawa couplings are protected by chiral symmetries, Yukawa couplings of any

size, even though not necessarily esthetically pleasing, are technically natural. Let us call

the chiral symmetry protecting the Yukawa coupling between the triplets, the leptons, and

the Higgs a Z2 symmetry for definiteness, but it could equally well be some other discrete

group or even a continuous one. If the Yukawa couplings are very small, as is the case for

– 7 –
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light triplets, we have an approximate symmetry, and it seems natural to ask if one could

turn this approximate symmetry into an exact one. In this case the triplets become a good

dark matter candidate very much like the LSP. In the absence of the Yukawa coupling

between the triplets and the Higgs and leptons, the neutrinos are exactly massless and it

seems we have defeated the purpose of our model. One can, however, generate the neutrino

masses at loop level if one introduces a scalar field with the same charge assignments under

the standard model gauge group as the Higgs that is also charged under this symmetry.

This may seem ad hoc, but especially in the context of grand unification this model has

several nice properties such as an interesting mechanism for baryogenesis and a natural

candidate for dark matter. We will leave this for a future publication.

4. Generating the baryon-asymmetry of the universe

A very nice feature of the most widely discussed seesaw mechanism involving right-handed

gauge singlet fermions is that, in addition to giving neutrino masses, it also allows for the

baryon asymmetry to be generated via leptogenesis [11, 12] (for a nice review and additional

references see e.g. [13]). It is therefore natural to ask whether the analogue mechanism will

still work in a seesaw mechanism that involves triplets. We know that in order to generate

the baryon asymmetry of the universe Sakharov’s conditions have to be satisfied [14]. One

of them is a departure from equilibrium while the asymmetry is generated. One might guess

that because of the triplets’ gauge interactions there will not be a sufficient departure from

equilibrium and no asymmetry will be generated. However, despite the triplets’ coupling to

the SU(2)L gauge bosons, the observed baryon asymmetry can still be generated very much

like in the original leptogenesis scenario [11] for what is believed to be the relevant range

of neutrino masses. Our calculations show that the triplets give rise to the same amount

of baryon asymmetry as the singlets. A nice feature of leptogenesis in models of neutrino

masses involving triplets is that the calculations are independent of initial conditions, or

rather the initial conditions are set by thermal equilibrium, because the gauge interactions

bring the triplets close to thermal equilibrium rather quickly. We will show this in the

remainder of this section, but before going into the details, let us briefly try to give an

intuitive argument why all this is plausible.

As the temperature drops below the mass of the triplets their equilibrium abundance

is Boltzmann suppressed. There are two main processes that drive the triplet abundance

towards its equilibrium abundance: annihilation into W -bosons, and the decay of triplets

into leptons and Higgs. While the decay in general is CP violating and generates a lep-

ton asymmetry, no asymmetry is generated in the annihilation, which means there is a

competition between the two channels. The coupling controlling the annihilation is the

gauge coupling, which is typically bigger than the Yukawa coupling controlling the decay.

However, for temperatures below the triplet mass the annihilation rate per triplet is Boltz-

mann suppressed since it is proportional to the number of triplets. This makes up for

the smallness of the Yukawa couplings. For small neutrino masses the Yukawa couplings

controlling the decays and inverse decays are small, and the annihilation is the dominant

process. In this regime the triplets are less efficient than singlets (assuming that the singlets

– 8 –
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were in thermal equilibrium, which is not necessarily a good assumption for small Yukawa

couplings). For larger values of neutrino masses the Yukawa couplings are larger and the

decay dominates, leading to an asymmetry, until they get so large that decays and inverse

decays are in thermal equilibrium and any asymmetry gets washed out. In this regime the

triplets behave just like singlets except for a factor of three because in thermal equilibrium

there are three triplets per singlet. This factor of three is canceled by a factor of one third

appearing in the CP violation for the triplets as compared to the CP violation for singlets,

and in the end we find that singlets and triplets generate the same baryon asymmetry for

the relevant range of neutrino masses. To determine what values of neutrino masses are

large or small according to this criterion requires detailed study, and we will see that for

the range of neutrino masses that seems to be realized in nature, just like for the singlets,

leptogenesis is dominated by decays and inverse decays, and the triplets can account for

the observed baryon asymmetry. We now turn to the quantitative study of leptogenesis for

the case of the seesaw mechanism involving triplets.

4.1 The Boltzmann equations and the efficiency factor

There have been advances in several directions in the quantitative analysis of leptogenesis

in type I seesaw models over the past few years, and more and more subtle effects are

being taken into account such as spectator processes [15], thermal corrections [16], and

flavor effects [17 – 21]. It would certainly be interesting to study effects such as thermal

corrections to particle masses and CP violations or effects of flavor in the case of triplets, but

we will limit ourselves to the “traditional” calculation for now. As long as the asymmetry is

generated at temperatures above 1012 − 1013 GeV , which is where the Yukawa interactions

between the heaviest leptons and the Higgs become important, the one flavor approximation

should be a very good approximation. Even below this scale we get an idea whether triplets

can generate the observed baryon asymmetry. While the effects of flavor tend to change

the amount of asymmetry generated as a function of the light neutrino masses, these

effects do not change the maximal asymmetry that can be generated [20]. We will further

make the simplifying assumption that ∆L = 2 scattering processes can be ignored. As

can be seen by simple dimensional analysis, this is expected to be a good approximation

for triplet masses below some 1014 GeV . Keeping these caveats in the back of our mind,

we write down the relevant Boltzmann equations for our problem, working in the limit

of hierarchical triplets. Elastic scattering processes occur at a rate faster than the rate

of expansion of the universe at the time, meaning we can assume kinetic equilibrium.

Furthermore, for the range of temperatures we are interested in, we can make the further,

reasonably good approximation that the various particle species obey a Maxwell-Boltzmann

distribution. The distribution functions of the various particles are then determined merely

by the normalization, or the total number of particles. Since we work in a cosmological

setting, it will be convenient for us to use comoving number densities. In other words we

normalize the various number densities relative to the number density of photons at the

time leptogenesis occurs appropriately redshifted. Under these assumptions the relevant
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dynamics is described by the following two coupled differential equations:

dNT

dx
= −A(x)

x2

(

N2
T −N2

T,eq

)

−D(x) (NT −NT,eq) , (4.1)

dNB−L

dx
= −εD(x) (NT −NT,eq) −W (x)NB−L . (4.2)

By NX we denote the ratio of X-particle density to the density of photons at the time of

leptogenesis red-shifted by a factor a3. NX,eq denotes the equilibrium value of this quantity.

We have introduced the dimensionless variable x = M/kT . The CP violation in the decay

of the lightest triplet is denoted by ε. The functions A(x), D(x), and W (x) are given by:

A(x) =
2α2

2ζ(3)

π2M1

M2
1 〈σv〉
α2

2

√

45

4π3Gg∗
, (4.3)

D(x) = x
〈Γ〉
H∗

=
Γ0

H∗
x
K1(x)

K2(x)
, (4.4)

W (x) =
1

2
D(x)

NT,eq

Nℓ,eq
=

3

4
D(x)x2K2(x) . (4.5)

The functions K1(x) and K2(x) are modified Bessel functions. The constant α2 is the

usual α2 = g2

4π with g being the gauge coupling of SU(2)L evaluated at the triplet mass.

M1 denotes the mass of the lightest triplet. The Hubble constant at the time when the

temperature equals the mass of the triplet, H∗, is given as

H∗ =

√

4π3G

45
g∗M

2
1 . (4.6)

The quantity g∗ = 106.75 is the effective number of degrees of freedom of the standard

model. In principle this number depends, of course, on temperature because the triplet is

relativistic as long as the temperature is above its mass and becomes non-relativistic for

temperatures below. Since leptogenesis occurs at roughly one tenth of the triplet’s mass it

is a good approximation to assume it is non-relativistic throughout the calculation and use

a constant effective number of degrees of freedom. The cross section σ is the cross section

for triplets annihilating into gauge bosons and the average is a thermal average. To be

explicit, it is given by

〈σv〉(x) =
1

M2
1

x

K2
2 (x)

∞
∫

1

dyy3/2σ̃(y)β(y)2K1(2
√
yx) , (4.7)

where K1(x) and K2(x) are modified Bessel functions, β(y) =
√

1 − 1/y, and the dimen-

sionless version of the cross section, σ̃(y), is given by

σ̃(y) = 4M2
1σ(s) , (4.8)
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with s = 4M2
1 y and the total annihilation cross section, σ(s), for triplets at leading order

given by the following expression:6

σ(s) =
α2

2π

18sβ
(3 − β2) +

4α2
2π

3sβ
(3 − β2)

+
2α2

2π

9β2s

(

ln

(

1 + β

1 − β

)

(21 − 6β2 − 3β4) − 33β + 17β3

)

. (4.9)

The first term is the contribution of annihilation into Higgs, the second term the contribu-

tion of annihilation into quarks and leptons, and the last term is the contribution coming

from annihilation into gauge bosons. The rate Γ0 is the decay rate of the triplet in its rest

frame and is given by

Γ0 =
(y†y)11M1

32π
=

1

4π

M2
1

v2

∑

i

mi|R1i|2 , (4.10)

where mi are the masses of the light neutrinos and R is the complex orthogonal matrix

introduced in the previous section. The combination
∑

i
mi|R1i|2 is often denoted as m̃1.

In analogy to the singlet case, the solution can be expressed rather neatly in terms of the

efficiency factor κf as follows:

NB−L(x) = −9

4
εκ(x) . (4.11)

The efficiency is normalized to be unity if all triplets decay in a CP violating way, and the

quantity of interest is, of course κf = κ(x → ∞). The only difference to the singlet case

at this point is the appearance of a factor of 9
4 instead of the usual factor 3

4 ,7 accounting

for the fact that there are three times as many triplets in equilibrium as there are singlets.

In figure 1, we show the numerical results of our calculation of the efficiency factor as a

function of the parameter K = Γ0/H∗ = m̃1

10−3 eV
. As comparison we show the efficiency

for singlets in the same plot, but one should have in mind that the triplets produce three

times the asymmetry singlets produce if the efficiencies and CP violation are the same.

4.2 CP violation

Let us now turn to the calculation of the CP violation, ε, in the triplet decay. It is defined

via

ε =
Γ(T1 → ℓH̄) − Γ(T1 → ℓ̄H)

Γ(T1 → ℓH̄) + Γ(T1 → ℓ̄H)
. (4.12)

The leading contribution comes from the interference of the tree and on-loop diagrams

shown in figure 2.

6Near threshold, one expects the cross section to be enhanced by non-perturbative effects such as Som-

merfeld enhancement and logarithmic enhancement due to soft radiation. We checked numerically that

these effects can be neglected in a first treatment but might have to be taken into account in a more de-

tailed study especially for small M1. The error introduced in the efficiency by ignoring these effects is at the

per cent level for K & 1 and increases to up to ten per cent for small K for M1 = 1010 GeV and decreases

with increasing M1.
7This is just the ratio in number densities of a fermionic degree of freedom and a bosonic degree of

freedom coming from the fact that we normalized to the number of photons
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Figure 1: The solid lines in this plot show the efficiency as a function of the parameter K = Γ0/H∗

for triplets for a range of triplet masses M1. The dashed lines represent the efficiency for singlets

as a comparison. The upper and lower dashed lines correspond to singlets with an initial density

equal to the equilibrium density and zero initial density, respectively.

�T1

H̄

l

�l

THT1

H̄

l

�HlT1

H̄

l

Figure 2: This plot shows the tree and one-loop diagrams whose interference gives rise to the

leading contribution to the CP violation in the triplet decay.

It is given by

ε = − Im (yi1y
∗
mny

∗
inym1)

32π
∑

j |yj1|2
Mn

M1

(

1 +

(

1 +
M2

n

M2
1

)

ln

(

M2
n

M2
1 +M2

n

))

+
Im (yi1y

∗
mnyiny

∗
m1)

32π
∑

j |yj1|2
M2

1

M2
1 −M2

n

+
Im (yi1y

∗
mny

∗
inym1)

32π
∑

j |yj1|2
M1Mn

M2
1 −M2

n

, (4.13)

where a summation over i,m and n is implied, and Mn is the mass of the triplet in the

loop.8 In the limit of hierarchical triplets, and expressed in terms of observable quantities

8We note that compared to the singlet case the first term has opposite sign. This sign can be traced to

the minus sign in the identity τAa
bτ

Ac
d = (δa

dδc
b − 1/2δa

b δc
d)/2. As a side remark, this also implies that the

vertex contribution to the CP violation is 1/N suppressed in a large N counting, but for N = 2 this is of

course not terribly relevant.
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rather than the Yukawa couplings, this becomes

ε = − 1

8π

M1

v2

∑

i
m2

i Im
(

R2
1i

)

∑

i
mi|R1i|2

. (4.14)

We note that once expressed in terms of physical quantities such as neutrino masses and

the entries of the complex orthogonal matrix R, this is smaller than the CP violation in

the case of singlets by a factor three.

As first shown in [22], the orthogonality of the matrix R can be used to derive an upper

bound on the magnitude of the CP violation given by

|ε| ≤ 1

8π

M1(m3 −m1)

v2
, (4.15)

where m3 and m1 are the masses of the heaviest and lightest of the light neutrinos, respec-

tively. Thinking of m3 − m1 as (m2
3 −m2

1)/(m3 + m1), it is apparent that this becomes

maximal for hierarchical neutrinos with m1 = 0 and m3 =
√

∆m2
atm ≈ 5 × 10−2 eV . The

maximal amount of CP violation is then given by

εmax = 3.3 × 10−7

(

M1

1010 GeV

)

(

√

∆m2
atm

0.05 eV

)

. (4.16)

4.3 The baryon asymmetry

All that is left now is to combine the result from the last two subsections to obtain the

final baryon asymmetry. It is given by

η =
9

4
dκf ǫ , (4.17)

where d = 28
79

86
2387 . The first factor converts from the B−L asymmetry we have calculated to

a baryon asymmetry. The second factor takes into account that the photon temperature,

and hence the number of photons, increases every time a particle species goes out of

equilibrium as the temperature drops below its mass, which dilutes the baryon-to-photon

ratio. There could be additional entropy production between the time leptogenesis occurs

and today which would dilute the baryon asymmetry further. All we can therefore be

certain of is that the asymmetry generated must be greater than or equal to the asymmetry

that is observed today

η =
9

4
dκf (M1,K)ǫ(M1) ≥ 6.2 × 10−10 . (4.18)

We present it as a lower bound on the mass of the lightest of the triplets. This is shown in

figure 3. For the range of neutrino masses that seems to be realized in nature, the bound

to a good approximation takes the form

M1 > (1.5 ± 0.1) × 1011 GeV

(

K

50

)1.1

& 9 × 1010 GeV

(

K

50

)1.1

, (4.19)
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Figure 3: This solid line in this plot shows some the efficiency as a function of the parameter

K = Γ0/H∗ for triplets. The dashed lines represent the efficiency for singlets as a comparison. The

upper and lower dashed lines correspond to singlets with an initial density equal to the equilibrium

density and zero initial density, respectively.

where the second inequality is the commonly quoted 3σ bound. The quoted error is a

combination of statistical uncertainties in the determination of the baryon asymmetry from

the CMB taken from [23] and uncertainties in the measurements of ∆m2
atm taken from [24],

which is the error commonly quoted in this context. The systematic uncertainties in the

determination of the baryon asymmetry are much larger than the statistical ones, and

there are various theoretical uncertainties that have not been included into the estimate.

We should therefore take it with a grain of salt.

From figure 3 we see that there is an absolute lower limit on the mass of the lightest

triplet if we require successful generation of the baryon asymmetry in the case of hierarchical

triplets.

M1 > (2.3 ± 0.2) × 1010 GeV & 1.7 × 1010 GeV , (4.20)

where the second inequality again indicates the 3σ bound. This is somewhat stronger than

the bound found in the singlet case.9 One should of course keep in mind that not only

does the lightest triplet have to be heavier than this bound for leptogenesis to work, but

9Just as in the singlet case the bound can be lowered substantially if the triplets are no longer hierarchical,

one takes the effects of flavor into account, or if one resorts to resonant leptogenesis [25].
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the universe must also reheat to temperatures higher than this after inflation for successful

leptogenesis to occur in our model.

In this context, it is worth pointing out that, while in theories with a low scale of

supersymmetry breaking the high reheat temperature required for successful leptogenesis

can be dangerous because of the gravitino problem [26 – 28], there is no gravitino problem

in our case, because supersymmetry is assumed to be broken at a very high scale.

5. Realization in the context of GUT theories

If there is a singlet state present in addition to the standard model degrees of freedom, the

matter content fits rather nicely into the 16 of SO(10). In this case, in the absence of low

energy supersymmetry, the gauge couplings do not unify and one is lead to study GUT

theories with a low supersymmetry breaking scale.

If a triplet state is present, the running of α2 is modified, and unification can be

achieved in the absence of low energy supersymmetry provided the mass spectrum of triplets

and their unification partners is appropriate.

We will show how this can be arranged in a technically natural way in the example of

the group SU(5). It could easily be extended to the other popular GUT groups.

5.1 The model and the actors II

To achieve grand unification, we have to include grand unification partners for the triplets.

The triplets are components of Weyl fermions, Σi, transforming in the adjoint representa-

tion of SU(5)10 and the Lagrangian of the effective theory describing the system just above

the scale at which unification occurs takes the form:11

L = Lkinetic + LYukawa − V (H5,H24,H75) (5.1)

with:

Lkinetic = − 1

2g2
5

Tr (FµνF
µν) − χα

i AiDαα̇χ
α̇ A
i − ψα AB

i iDαα̇ψ
α̇
i AB (5.2)

+ (DµH5)
†
A (DµH5)

A + (DµH24)
†A

B(DµH24)
B

A

+Σα
i

A
BiDαα̇Σ

α̇ B
i A +

1

2
Mi

(

Σα
i

A
BΣα i

B
A + h.c.

)

+(DµH75)
†AB

CD(DµH75)
CD
AB

and:

LYukawa = −gijψ
AB
i χj BH5

†
A − g̃ijǫABCDEψ

AB
i ψCD

j HE
5 (5.3)

−GijΣ
α
i

A
BΣα j

B
CH24

C
A − G̃ijΣ

α
i

A
CΣα j

B
DH75

CD
AB

−yijχ
α
i AΣα j

A
BH

B
5 + h.c.

10Grand unified theories with gauge group SU(5) extended by a single adjoint fermion have been studied

in [29 – 31] and theories with gauge group SU(5) extended by a single adjoint and a Higgs in the 45 in [32].
11We do not address the doublet triplet splitting. There will be additional fields needed to address this

issue that we suppress for now.

– 15 –



J
H
E
P
0
9
(
2
0
0
8
)
0
2
0

where the covariant derivative is defined as usual:

DµOAB...
CD... = ∂µOAB...

CD...− iAA
µ E

OEB...
CD...− iAB

µ E
OAE...

CD... + iAE
µ C

OAB...
ED... + iAE

µ D
OAB...

CE... + . . . (5.4)

The field χ denotes the usual left-handed 5, ψ is the left-handed 10, H5 is the 5-Higgs

containing the SM Higgs, H24 is the usual Higgs in the adjoint of SU(5) whose vacuum

expectation value breaks SU(5) down to the standard model gauge group in ordinary SU(5)

grand unified theories.

The new fields are the Higgs in the 75, H75,
12 and the fermion Σ that transforms in

the adjoint and contains the triplet. To be completely explicit, let us specify how Σ is

related to the triplet:

Σ =
√

2

(

O − 2√
60
N13×3 M1

M2 T + 3√
60
N12×2

)

(5.5)

Under SU(3) × SU(2) × U(1) O transforms as (8,1)0 and will from now on be referred to

as the octet, the triplet, T , transforms according to (1,3)0, M1 as (3,2)− 5

6

, and M2 as

(3,2) 5

6

. The fieldsM1 and M2 are typically required to have masses close to the GUT scale.

Different from what one might expect this is not required to evade the experimental limits

on proton decay. Since the fields are fermions and the leading baryon number violating

operators generated in the low energy theory by integrating them out are dimension seven.

So the bounds on the proton lifetime lead to a much weaker lower bound [33] on the mass

of around 1010 GeV . Instead these particles have to be heavy for the following reason. The

octet is long-lived.13 In order for it to decay before nucleosynthesis it must have a mass

of a at least around 2.5 × 1010 GeV . Together with unification this puts a lower bound on

the mass of the fields M1 and M2 of about 1014 GeV .

5.2 Constraints from unification of coupling constants

Before we write down the conditions that are forced on us by our bias that the gauge

couplings should unify, a few remarks about the logic seem appropriate.

In the usual discussion of the unification of gauge coupling constants one takes two of

the coupling constants of the standard model at the weak scale as input parameters and

predicts the value of the grand unification scale, MGUT, as well as the coupling constant

αGUT of the grand unified theory at this scale. Assuming unification one can then predict

the third coupling of the standard model. For a long time the two low energy couplings

used were αS(MZ) and αEM (MZ) and the quantity predicted was sin2 θW . Since αS(MZ)

is the coupling with the greatest uncertainty it has become more popular to use αEM and

sin2 θW to predict αS(MZ) but the idea remains the same.

12The reason for including a Higgs in the 75 will become clear in the next section when we talk about

constraints from grand unification. In brief it is required if we want a renormalizable model with the mass

spectrum for triplets and octets needed for unification.
13The decay involves a virtual Higgs triplet whose mass is of order MGUT. In addition, the Yukawa

couplings involved in its decay are related to the Yukawa couplings governing the triplet decay due to

unification and are forced to be small by the mass scale of the light neutrinos as we shall see in section 3.1.

– 16 –



J
H
E
P
0
9
(
2
0
0
8
)
0
2
0

In our case the logic is somewhat different because the model has additional parameters

and is less restricted. Instead of predicting the energy scale of grand unification, which

is impossible due to the intermediate mass scales we are introducing into the theory, we

get to choose the GUT scale. We take it to be MGUT = 2 × 1016GeV to ensure a long

enough lifetime for the proton. We then use α1(MZ) to predict the gauge coupling of the

grand unified theory at the unification scale. This is straightforward since the only new,

potentially light, fields carrying hypercharge are the fields M1 and M2. Since their masses

are close to MGUT, the running of α1(µ) is essentially identical with its running in the

standard model and we simply have αGUT(MGUT) = α1(MGUT). Given αGUT and MGUT,

assuming grand unification, and imposing that the values of the other two gauge couplings

of the standard model at the weak scale be compatible with their experimental values we

find that the masses of the triplets and octets have to satisfy the following relations:14

MT1
MT2

MT3
= 8.54 × 1030 GeV 3

(

2 × 1016 GeV

MGUT

)2.45

, (5.6)

and similarly for the octets:

MO1
MO2

MO3
= 1.60 × 1038 GeV 3

(

2 × 1016 GeV

MGUT

)2.55

. (5.7)

If we assume that the Majorana masses Mi in eq. (5.2) are of the same order of

magnitude as the grand unified scale, MGUT, we would expect both the triplet as well as

the octet to have masses of that same order of magnitude. However, once both the Higgs in

the 24 and the Higgs in the 75 acquire a vacuum expectation value and the grand unified

symmetry is broken, we get an additional contribution to their masses from their Yukawa

interactions and we assume that the couplings are chosen such that the above relations are

satisfied. We would like to emphasize that while this requires a particular choice of values

for the parameters in our model, this choice is stable under quantum corrections.

For completeness let us mention that the singlet, N , as well as the fields M1 and M2

will then have a mass of order Mi ∝MGUT.

For more details about the derivation of the conditions (5.6), (5.7), we refer the inter-

ested reader to appendix A.

One might worry whether the theory above the grand unified scale is still asymptoti-

cally free, which is a nice feature of both the non-SUSY and the SUSY SU(5) grand unified

theories. It turns out that this is in fact no longer the case in this model. However, even

though the coupling αGUT will increase as the energy scale increases beyond MGUT, the

theory remains perturbative all the way up to the Planck scale where we expect new physics

to become relevant.

14These relations are valid assuming the fields M1 and M2 have masses of order MGUT and do not

contribute to the running of the couplings. If their masses are somewhat below the GUT scale the effect is

that the masses of both the octets and the triplets decrease. For details see appendix A
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6. Conclusions and outlook

We presented a model that in addition to the standard model degrees of freedom con-

tains SU(2)L-triplet fermions as well as SU(3)c-octet fermions at intermediate energies and

further degrees of freedom at the GUT scale.

The model provides a neutrino mass matrix consistent with current experiments and

is capable of generating the observed baryon asymmetry of the universe provided that the

lightest triplet has a mass around or above 1010GeV . For triplet masses of that same order

of magnitude, the model can lead to unification of gauge coupling constants in the absence

of low energy supersymmetry without dangerous proton decay provided that the product

of the octets’ masses is around 1038 GeV 3, and the remaining unification partners of the

triplets have masses around the GUT scale.

In the context of SU(5), we showed that this spectrum can be obtained in a technically

natural way.

We showed, that there are hardly any constraints on the triplets’ masses from exper-

imental bounds on flavor changing neutral currents in the lepton sector, from bounds on

the electron electric dipole moment, or from precision electroweak measurements.

It is therefore conceivable that one of the triplets is light enough to be seen at the

LHC [4], or more easily at the ILC. Since this is of course not required to be the case

by anything we know of, generically the model is, however, a realization of the nightmare

scenario that the LHC will discover a Higgs and nothing else. This can of course be

“accomplished” in easier ways, but one should keep in mind the virtues of this model over

other scenarios of that type such as providing neutrino masses, successful leptogenesis, and

grand unification.

As it stands our model does not provide a natural dark matter candidate, but it could

easily be modified to accommodate axionic dark matter.

Another way in which it can be modified is by imposing a symmetry under which

the triplet and its unification partners are charged while the standard model particles are

neutral. In this case the lightest triplet becomes a natural candidate for dark matter, which

could possibly be seen at the LHC.

To generate neutrino masses, additional states charged under this new symmetry with

the quantum numbers of the standard model Higgs and their unification partners have to

be introduced.

Under certain circumstances the baryon asymmetry of the universe can then be pro-

duced by late decaying octets, while still maintaining grand unification. We leave this for

future work.
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A. Grand unification — A more detailed discussion

Let us look at the evolution of the couplings in somewhat more detail. As mentioned in

section 5 we get to pick MGUT and we choose it to be 2 × 1016GeV to evade bounds on

the proton lifetime. We will then evolve α1(MZ) up to the grand unification scale and

hence predict αGUT. Requiring that the values of α2(MZ) and αS(MZ) obtained from

the renormalization group be compatible with the experimentally observed ones will put

bounds on the masses of triplets and octets. We will work in the MS scheme. In this

scheme the current experimental values for αEM(MZ), sin2 θW (MZ), and αS(MZ) taken

from [34] give rise to the following values for α1(MZ), α2(MZ), and αS(MZ):

α−1
1 (MZ) = 59.00 ± 0.02 (A.1)

α−1
2 (MZ) = 29.59 ± 0.02

α−1
S (MZ) = 8.50 ± 0.14

At one loop the renormalization group equations predict a grand unified coupling of:

α−1
GUT(MGUT) = α−1

1 (MZ) +
1

2π
b1 ln

MGUT

MZ
= 37.45 , (A.2)

where b1 = −41/10 is the standard model value. Using this as initial condition in the one-

loop renormalization group equations for the two remaining couplings we find the following

condition on the masses:

α−1
2 (MZ) = α−1

1 (MZ) − 1

2π
(b2 − b1) ln

MGUT

MZ
+

2

3π
ln

(

M3
GUT

MT1
MT2

MT3

)

(A.3)

α−1
S (MZ) = α−1

1 (MZ) − 1

2π
(b3 − b1) ln

MGUT

MZ
+

1

π
ln

(

M3
GUT

MO1
MO2

MO3

)

(A.4)

where again b2 = 19/6 and b3 = 7 are the standard model values. This leads to the

conditions on the masses of triplets and octets quoted in section 5:

MT1
MT2

MT3
= 8.54 × 1030 GeV 3

(

2 × 1016 GeV

MGUT

)2.45

(A.5)

MO1
MO2

MO3
= 1.60 × 1038 GeV 3

(

2 × 1016 GeV

MGUT

)2.55

. (A.6)

If we lower the mass of M1 and M2 significantly below the GUT scale we should take it

into account. This gives rise to the following modified conditions:

MT1
MT2

MT3

MM1
MM2

MM3

= 1.07 × 10−18

(

2 × 1016 GeV

MGUT

)5.45

(A.7)

MO1
MO2

MO3

MM1
MM2

MM3

= 2.00 × 10−11

(

2 × 1016 GeV

MGUT

)5.55

. (A.8)
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We see that this condition is invariant under a rescaling of the masses of all particles by

a common factor. This is something one might have guessed since a common rescaling of

the masses of all the components in a representations of SU(5) will not change whether or

at what scale unification occurs. It is hence quite trivial to take into account if the masses

of the fields M1 and M2 are slightly below the GUT scale. A convenient way to make this

apparent is to rewrite the condition as:

MT1
MT2

MT3

(

M3
GUT

MM1
MM2

MM3

)

= 8.54 × 1030GeV 3

(

2 × 1016 GeV

MGUT

)2.45

(A.9)

MO1
MO2

MO3

(

M3
GUT

MM1
MM2

MM3

)

= 1.60 × 1038GeV 3

(

2 × 1016 GeV

MGUT

)2.55

. (A.10)

As far as the strength of the coupling of the grand unified theory is concerned, it should

be clear that the smaller the masses the larger the coupling of the grand unified theory

and we might be worried that our theory becomes strongly coupled before the Planck scale

if the new particles are too light, especially since the theory is not asymptotically free.

However, as mentioned in section 5, there is a fairly stringent lower bound on the mass

of the octets coming from nucleosynthesis. This bound translates to a lower bound for

the M1 and M2 fields of around 1014 GeV , incidentally ensuring that the theory remains

weakly coupled all the way to the Planck scale.
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